

APPLICATION OF ARTIFICIAL INTELLIGENCE FOR PREDICTING THE POTENTIAL ADVERSE EFFECTS OF HAZARDOUS OCCUPATIONAL FACTORS ON WORKERS' HEALTH

Ganieva Dilyora,

3 th year Student of the Faculty of Medical Prevention and
Public Health of the Tashkent State Medical University, Uzbekistan

Samigova Nargiz,

Associate Professor of the Department of Municipal and
Occupational Hygiene of the Tashkent State Medical University, Uzbekistan;

E-mail: nargizsam@rambler.ru

<https://orcid.org/0000-0003-0123-0599>

Modern industrial processes are characterized by high intensity and technological complexity, which are accompanied by workers' exposure to a wide range of harmful and hazardous occupational factors. These include physical (noise, vibration, adverse microclimate, dust exposure, ionizing and non-ionizing radiation), chemical, biological, as well as psychophysiological stressors. Traditional hygienic assessment methods are often retrospective in nature and do not always ensure timely identification of emerging health risks. Since such approaches are largely based on regulatory threshold values and statistical analyses, their capacity for early detection of unfavorable health changes remains limited. Therefore, the integration of artificial intelligence (AI) technologies capable of processing large heterogeneous datasets and generating predictive risk models is becoming increasingly relevant for forecasting potential adverse effects of workplace hazards on workers' health. The application of AI in occupational hygiene enables the integration of industrial monitoring data, results of laboratory and instrumental examinations, as well as medical and physiological indicators of workers. Based on these data, predictive models can be developed to assess the likelihood of occupational disease development depending on the intensity and duration of exposure to hazardous factors. For instance, under exposure to noise and vibration, machine learning algorithms can forecast the risk of sensorineural hearing loss and vibration-induced disorders. AI-based analysis of microclimatic parameters makes it possible to estimate the probability of heat stress, hypothermia, thermoregulation disturbances, and functional impairments of the cardiovascular system. In chemically hazardous industries, intelligent analytical systems allow prediction of cumulative toxic effects and the risk of chronic intoxications.

The implementation of AI-driven technologies ensures a transition from retrospective evaluation of working conditions to preventive and proactive management of occupational

risks, ultimately contributing to the preservation of workers' health. The introduction of intelligent systems facilitates early detection of professional hazards, enables personalization of preventive strategies, and may significantly reduce the incidence of occupational morbidity.

References

1. Salomova, F. I., Akhmadalieva, N. O., Sharipova, S. A., & Abdukadirova, L. K. (2019). Social Portrait, Conditions, Lifestyle and Health of Universities Professors of The Republic of Uzbekistan in Modern Conditions. Central Asian Journal of Medicine, 2019(3), 93-103.
2. Ахмадалиева, Н. О. (2009). Возможности повышения защит-ных свойств организма на основе факторов питания. Вестник Санкт-Петербургской государственной медицинской академии им. ИИ Мечникова, (1), 43-46.
3. Самигова, Н. Р. (2016). Изучение условий труда работающих на производствах по изготовлению изделий из алюминиевого профиля. Молодой ученый, 2, 385-387.
4. Рахимов, Б. Б., Мирсагатова, М. Р., & Садирова, М. К. (2024). ВЛИЯНИЕ МОНИТОРИНГА КАЧЕСТВА ВОЗДУХА НА ОБЩЕСТВЕННОЕ ЗДОРОВЬЕ И ЭКОЛОГИЧЕСКУЮ УСТОЙЧИВОСТЬ В УЗБЕКИСТАНЕ. International Conference on Innovations in Applied Sciences, Education and Humanities.
5. Самигова, Н. Р., & Мирсагатова, М. Р. (2017). Изучение динамики изменений в функциональном состоянии сердечно-сосудистой системы рабочих мебельного производства. Молодой ученый, (50), 126-129.
6. Шеркузиева, Г. Ф., Саломова, Ф. И., Самигова, Н. Р., & Хегай, Л. Н. (2022). Результаты исследований острой и хронической токсичности пищевой добавки" Fass hungel. In Сборник материалов республиканской научно-практической конференции с международным участием (pp. 442-447).
7. Самигова, Н. Р., Шеркузиева, Г. Ф., Мусаев, Э. В., Рустамова, М. К. К., & Хаджаева, У. А. К. (2019). Особенности условий труда медицинских работников санитарно-гигиенических лабораторий. Academy, (2 (41)), 97-98.
8. Шеркузиева, Г. Ф., Хегай, Л. Н., & Самигова, Н. Р. (2020). Токсичность и опасность пищевой смеси «МЕЛЛА КРУАССАН». In XIX-ая Международная научно-практическая конференция: Современный мир: Природа и человек: к (pp. 275-281).
9. Самигова, Н. Р. (2016). ИССЛЕДОВАНИЕ ФУНКЦИОНАЛЬНОГО СОСТОЯНИЯ СЕРДЕЧНО-СОСУДИСТОЙ СИСТЕМЫ У РАБОТАЮЩИХ ШВЕЙНОГО ПРОИЗВОДСТВА. ББК 28.903 я43, 203.