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1. Introduction 

One of the fundamental problems of modern hydro- and aerodynamics is the study of the 

motion of a viscous fluid along the surface of solid bodies. The boundary-layer theory 

proposed in 1904 by the German scientist Ludwig Prandtl brought a revolutionary change to 

fluid mechanics [1]. This theory makes it possible, at high Reynolds numbers, to decompose 

the flow into two distinct regions: a thin layer adjacent to the surface where viscous (frictional) 

forces are dominant, and an outer potential flow region where the effects of viscosity are 

negligible. 

Initially, G. Blasius (1908) presented his classical solution for the flow over a flat plate [2]. 

However, in real engineering applications (such as aircraft wings and turbine blades), the 

surface is rarely perfectly flat, and the external flow velocity is generally not constant. The 

presence of a pressure gradient necessitates a more general description of the boundary layer. 

In 1931, the equation proposed by V. M. Falkner and S. W. Skan addressed this issue by 

providing a similarity-based model for flows in accelerating or decelerating external velocity 

fields [3]. 

 

2. Physical and Mathematical Formulation of the Problem 

The Falkner–Skan problem concerns the laminar boundary layer developing over a wedge-

shaped body, either converging or diverging. The external flow velocity ( )U x  is assumed to 

vary with the surface coordinate x  according to a power-law distribution [4]: 

( ) ,mU x Cx=  

where C  is a constant and m  is a parameter determined by the geometry of the flow. 

The opening angle of the converging or diverging body is equal to  , where   (the Hartree 

parameter) is defined by the relation 

2

1

m

m
 =

+
 

This formulation allows the influence of favorable or adverse pressure gradients on the 

boundary-layer structure to be systematically analyzed through the single parameter  . 

The Navier–Stokes equations are simplified and, by introducing the stream function  , the 

resulting system of partial differential equations is reduced to a single ordinary differential 
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equation (ODE). For this purpose, the following similarity variable   and the dimensionless 

stream function ( )f   are used [5]: 

( )( 1) 2 ( )
, ( , ) ( ).
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As a result, the Falkner–Skan equation is obtained: 
2(1 ( ) ) 0.f ff f  + + − =  

To solve the problem, the following physical boundary conditions are imposed [1,5]: 

1. No-slip condition at the wall ( 0y = ): the fluid adheres to the surface 

(0) 0, (0) 0.f f = =  

2. Condition at infinity ( y → ): the velocity approaches the external flow 

( ) 1.f   =  

 

3. Parameter analysis and flow regimes 

In the Falkner–Skan equation, the parameter $\beta$ is the main factor that determines the 

physical nature of the flow. 

0 =  (zero pressure gradient): In this case, the equation reduces to the Blasius equation 

( 0.5 0f ff + = ). This corresponds to the flow over a flat plate. 

0   (favorable pressure gradient): The flow accelerates ( / 0dp dx  ). The case 1 =  is 

referred to as a stagnation-point flow. In this regime, the boundary layer becomes thinner and 

more stable [4]. 

0   (adverse pressure gradient): The flow decelerates ( / 0dp dx  ). The most important 

critical value is 0.1988  − . At this point, the velocity gradient at the wall becomes zero 

( (0) 0f  = ), meaning that the shear stress vanishes and flow separation from the surface occurs 

[6]. 

 

4. Numerical modeling and results 

Since the Falkner–Skan equation is strongly nonlinear, an exact analytical solution does not 

exist. Therefore, the shooting method combined with Runge–Kutta algorithms was used to 

solve it numerically [6]. 

The graphs obtained using a Python program for different values of the parameter  , which 

compute the velocity profiles (Figure 1), demonstrate the following: 

Deformation of the velocity profile: as the absolute value of the parameter   increases (from 

0.1−  to 0.1988− ), the velocity profile gradually becomes “flatter.” This behavior is explained 
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by the deceleration of the external flow and the associated decrease in the kinetic energy of the 

fluid within the boundary layer. 

Decrease in shear stress: the slope of the curve at the origin of the coordinate system ( 0y =  or 

0 = ) is directly proportional to the wall shear stress on the surface ( ~ (0)
w

f  ). 

As shown in the figure, a decrease in   leads to a reduction in the initial curvature of the 

profile. Separation point: the lowest curve ( 0.1988 = − ) is of particular importance. In this 

case, the derivative of the velocity profile at the wall becomes zero: 

(0) 0,f    

indicating vanishing shear stress and the onset of flow separation. 

 
Figure 1. Velocity profiles for the Falkner–Skan flow under adverse pressure gradients 

(β<0) 

The graph illustrates the deformation of the velocity profile as the parameter   decreases from 

0.1000−  to 0.1988− , as well as the approach to the boundary-layer separation state at the 

critical value 
crit

0.1988  − . 

 

5. Conclusion 

In this study, the motion of a viscous fluid over converging or diverging surfaces was 

investigated using the Falkner–Skan equation. The results of the numerical modeling show that 

both the sign and the magnitude of the pressure gradient have a decisive influence on 

boundary-layer stability. A favorable pressure gradient ( 0  ) stabilizes the flow, whereas an 

adverse pressure gradient ( 0  ) leads to flow separation from the surface. 
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