International Conference on Advance Research in Humanities, Applied Sciences and Education
Hosted from Berlin, Germany

https://theconferencehub.com

27th November -2025

MACROANATOMICAL STRUCTURE OF THE PANCREAS

Student: Allambergenova Jasmina
Faculty of General Medicine No. 2, Group 210-"A"
Tashkent State Medical University

Scientific Supervisor: Niyozov Norbek

Abstract

This article discusses the anatomical and physiological structure of the pancreas, its role in the digestive and endocrine systems, as well as the causes and consequences of pancreatic dysfunction. The pancreas is one of the most important mixed glands in the human body. Through the production of digestive enzymes, it participates in the process of digestion, while through the secretion of insulin and other hormones, it regulates metabolism.

Keywords: pancreas, pancreatitis, insulin.

The **pancreas** is one of the most complex and multifunctional glands in the human body. As a mixed secretion gland, it performs both **exocrine** and **endocrine** functions — producing digestive enzymes through its exocrine part and regulating glucose metabolism through hormones such as **insulin**, **glucagon**, and **somatostatin** in its endocrine part.

From an anatomical and clinical standpoint, a deep understanding of the macroanatomical structure of the pancreas is essential in gastroenterology, endocrinology, and surgical practice—particularly for minimizing surgical risks in procedures such as pancreaticoduodenectomy, treatment of pancreatic cysts, and neoplasms.

The pancreas is **retroperitoneally located**, positioned between the **posterior wall of the stomach (paries posterior ventriculi)** and the **duodenal loops (duodenum)**, at the level of the L1–L2 vertebrae.

In a healthy adult, the pancreas measures on average 15–20 cm in length, 2–3 cm in thickness, and weighs 70–100 g. Morphometric studies indicate that the size and weight of the pancreas depend on gender, age, and anthropometric parameters: in men, the average weight is 85 ± 12 g, while in women, it is 73 ± 10 g.

Anatomically, the pancreas consists of three main parts: the head (caput pancreatis), the body (corpus pancreatis), and the tail (cauda pancreatis). The head of the pancreas is located within the duodenal loop, and in surgical practice—particularly during pancreaticoduodenectomy—this region requires high technical precision. The body of the pancreas lies anterior to the vertebral column, with its posterior surface (facies posterior) closely related to the splenic vein (vena lienalis), abdominal aorta (aorta

ICARHSE

International Conference on Advance Research in Humanities, Applied Sciences and Education
Hosted from Berlin, Germany

https://theconferencehub.com

27th November -2025

abdominalis), and left renal vein (vena renalis sinistra). The tail of the pancreas extends toward the splenic hilum (hilum lienis) and represents the area where the endocrine activity of the gland is relatively high.

The ductal system (systema ductale) of the pancreas, represented mainly by the main pancreatic duct (ductus pancreaticus, Wirsung's duct), holds great clinical significance. In approximately 90% of cases, the main duct joins the common bile duct (ductus choledochus) and opens into the duodenum through the major duodenal papilla (papilla duodeni major).

According to statistical data, in about 10–12% of the population, an accessory pancreatic duct (ductus pancreaticus accessorius, Santorini's duct) remains functionally active. These anatomical variations play an important role in determining surgical strategy during operations involving pancreatic tumors and cystic formations.

The blood supply of the pancreas is also complex and segmental in nature. The head is supplied by branches of the superior and inferior pancreaticoduodenal arteries (arteria pancreaticoduodenalis superior et inferior), while the body and tail are nourished by branches of the splenic artery (arteria lienalis). Venous drainage occurs via the pancreaticoduodenal vein and the splenic vein, which drain into the ultimately portal vein (vena Studies indicate that individual variations in the arterial branching pattern are observed in 12–15% of cases, which necessitates preoperative identification to minimize intraoperative bleeding.

In recent years, magnetic resonance imaging (MRI), computed tomography (CT), and 3D angiography have enabled precise visualization of the segmental structure, ductal system, and vascular supply of the pancreas. These advanced imaging techniques are clinically significant for diagnosing pancreatic tumors and inflammatory processes, determining the extent of resection, and reducing postoperative complications.

References

- 1.Akhmedova S. M. et al. Pancreatic morphology in hypothyroidism //International journal of artificial intelligence. -2024. -T. 4. N $\underline{0}$. 09. -C. 475-479.
- 2.Ergashev S., Usmanov R., Niyozov N. Morpho-functional changes in the endocrine pancreas of white rats under metabolic syndrome conditions //Central Asian Journal of Medicine. 2025. №. 4. C. 75-80.
- 3. Kurbanovich N. N., Abdurasulovich G. D. Features of morphological changes in the pancreas //Texas Journal of Medical Science. 2023. T. 16. C. 79-83.
- 4. Kurbanovich N. N. et al. Reactive changes in the pancreas in hypothyroidism //American Journal of Interdisciplinary Research and Development. 2024. T. 25. C. 343-347.

27th November -2025

- 5.Mukhamadovna A. S. et al. Indicators of Fetometry of the Fetus in Pregnant Women in a State of Hypothyroidism //Texas Journal of Medical Science. 2023. T. 16. C. 75-78.
- 6.Mukhamadovna A. S. et al. Morphological Characteristics of Myocardial Changes When Exposed to Pesticides //Onomazein. 2023. №. 62. C. 1226-1237.
- 7.Matkarimov O., Axmedova S., Niyozov N. Criteria for assessing structural changes in the myocardium in experimental hypodynamic and diabetes //Central Asian Journal of Medicine. $-2025. N_{\odot}$. 3. C. 273-283.
- 8.Matkarimov O., Axmedova S., Niyozov N. Tajribaviy gipodinamiya holatida miokardning morfologiyasi //Modern Science and Research. − 2025. − T. 4. − №. 5. − C. 338-343.
- 9. Niyozov N. et al. Medical sciences //Art studies. C. 36.
- 10.Niyozov N., Ergashev S. Pancreatic morphology in thyroid diseases in white mice //Modern Science and Research. -2025. -T. 4. $-\mathbb{N}_{2}$. 4.
- 11.Niyozov N. K. et al. Morphological Aspects of Pancreas Changes in Experimental Hypothyroidism //Journal of education and scientific medicine. 2023. T. 8. №. 2. C. 27-31.
- 12.Niyozov N. K. et al. Morphology of the Pancreas Against the Background of Hypothyroidism //Journal of education and scientific medicine. -2024. -T. 18. $-N_{\odot}$. 5. -C. 47-52.
- 13.Niyozov N., Qoʻqonboyev M. Me'da osti bezi morfologiyasi tajribaviy gipotireozda //Modern Science and Research. -2025. -T. 4. -N₂. 3. -C. 798-806.
- 14.Niyozov N. K., Kukonboyev M. I. Pancreatic gland morphology in experimental hypothyroidism //Modern Science and Research. 2025. T. 4. № 4. C. 1169-1176.
- 15.Niyozov N.Q. Kalamushlar me'da osti bezi morfologiyasi tajribaviy gipotireoz fonida //Modern Science and Research. − 2025. − T. 4. − №. 6. − C. 955-961.
- 16.Umerov A. A., Niyozov N. Q. Pancreatic pathologies: understanding the interplay between chronic diseases and metabolic dysfunction //Conference on the role and importance of science in the modern world. -2025. -T. 2. -N0. 1. -C. 104-107.
- 17.Umerov A. A., Niyozov N. Q. Pancreatic morphology in experimental stress //Multidisciplinary Journal of Science and Technology. − 2025. − T. 5. − №. 1. − C. 223-227.
- 18.Umerov A., Niyozov N. Pancreatic morphometry under stress //International journal of medical sciences. 2025. T. 1. №. 1. C. 362-368.
- 19.Маткаримов О., Ахмедова С., Ниёзов Н. Морфология миокарда у экспериментальных крыс в условиях гиподинамики //Modern Science and Research. 2025. Т. 4. № 5. С. 507-511.
- 20. Муминов О. Б., Ниёзов Н. К., Нисанбаева А. У. Научный медицинский вестник югры //научный медицинский вестник югры Учредители: Ханты-Мансийская государственная медицинская академия. 2021. Т. 1. С. 141-143.