PATHOGENESIS AND MODERN THERAPEUTIC STRATEGIES IN RHEUMATOID ARTHRITIS.

S. B. Parpieva,

E. A. Vasilevsky,

O.T.Dadabaev,

N. G. Kamalov

Andijan State Medical Institute Andijan, Uzbekistan

Introduction

Rheumatoid arthritis (RA) is a chronic, systemic autoimmune disease that primarily manifests as a persistent inflammatory synovitis, leading to progressive cartilage damage and bone erosion if left undertreated [6]. Affecting up to 1% of the global population, RA imposes a substantial burden on individuals and healthcare systems, often causing significant pain, functional disability, and a diminished quality of life [6]. The last two decades have witnessed a revolutionary shift in the management of RA. The therapeutic paradigm has evolved from a palliative approach focused on symptom control to a proactive and aggressive strategy aimed at preventing irreversible joint damage and preserving long-term function [5]. This transformation is rooted in a vastly improved understanding of RA pathogenesis, now recognized as a complex, multi-stage process. This process is initiated by environmental exposures in genetically predisposed individuals, with autoimmunity often developing years before the clinical onset of arthritis [4].

The current standard of care is encapsulated by the "Treat-to-Target" (T2T) philosophy. This strategy involves a collaborative effort between the clinician and patient to define a clear and explicit treatment goal—ideally, clinical remission or, at a minimum, low disease activity and to regularly monitor progress towards this goal, with timely adjustments to therapy as needed [5]. The successful implementation of T2T is dependent on early and accurate diagnosis, a deep understanding of the underlying disease mechanisms, and the judicious use of an expanding armamentarium of therapeutic agents. This review will synthesize the current knowledge of RA pathogenesis, outline the modern diagnostic framework, and detail the therapeutic strategies that have fundamentally altered the natural history of this once-crippling disease.

Etiology and pathogenesis. The development of RA is not caused by a single factor but rather results from a complex interplay between genetic susceptibility and environmental triggers, which collectively disrupt immune self-tolerance and ignite a self-perpetuating inflammatory cascade [4, 6].

International Conference on Advance Research in Humanities, Applied Sciences and Education
Hosted from New York, USA
https://theconferencehub.com
October, 28th 2025

Genetic and environmental factors. Genetic factors are major contributors to RA susceptibility. The most potent genetic risk is associated with the human leukocyte antigen (HLA) region, specifically certain alleles of the HLA-DRB1 gene. Alleles that share a conserved amino acid sequence, famously known as the "shared epitope," confer the strongest risk for developing anti-citrullinated protein antibody (ACPA)-positive RA [3]. Beyond the HLA locus, other genes such as PTPN22 are also implicated. However, genetic predisposition alone is insufficient to trigger the disease. Environmental exposures play a crucial role, and the most well-documented is cigarette smoking. A powerful gene-environment interaction exists between smoking and the "shared epitope" HLA alleles, which synergistically and dramatically increases the risk of developing ACPA-positive RA [3]. The prevailing hypothesis is that smoking induces inflammation and enzymatic protein citrullination within the lungs, creating neoantigens that, in a genetically susceptible host, can break immune tolerance and initiate an autoimmune response [4].

The inflammatory cascade. The central pathogenetic event in RA is the loss of self-tolerance, leading to a targeted autoimmune response against modified self-proteins, particularly citrullinated proteins [4]. This results in the production of ACPAs, which are highly specific for RA and are key players in the disease process [6]. The autoimmune response involves the activation and massive infiltration of the synovium by various immune cells, including T-lymphocytes and B-lymphocytes. This cellular influx, combined with the aggressive proliferation of resident synovial fibroblasts, transforms the normally delicate synovial membrane into an invasive, tumor-like tissue known as the pannus [4].

This pannus becomes the epicenter of a vicious cycle of inflammation. Activated immune and stromal cells produce a plethora of pro-inflammatory cytokines that drive the disease. Among these, Tumor Necrosis Factor-alpha (TNF-α), Interleukin-6 (IL-6), and Interleukin-1 (IL-1) are considered the principal architects of the inflammatory and destructive processes in RA [4]. These cytokines perpetuate synovial inflammation, mediate systemic symptoms such as fatigue and fever, and, most critically, they directly promote joint destruction. They achieve this by stimulating osteoclasts, the cells responsible for bone resorption, leading to the formation of the characteristic bone erosions that are the hallmark of irreversible structural damage in RA [4].

Modern Approaches to Diagnosis. The prevention of long-term disability in RA is critically dependent on early and accurate diagnosis. This allows for the prompt initiation of effective therapy within the so-called "window of opportunity," an early phase of the disease where intervention is most effective at altering the disease course and preventing the establishment of chronic, irreversible damage [6].

The ACR/EULAR 2010 classification criteria were specifically developed to identify RA at an earlier stage than previous criteria [2]. They utilize a point-based scoring system that assesses patients across four key domains: 1) joint involvement (number and size of affected joints); 2) serology (presence of Rheumatoid Factor and/or ACPA); 3) acute-phase reactants (elevated ESR or CRP); and 4) duration of symptoms [2]. A score of 6 or more out of 10 is required for classification as definite RA. Serological markers are vital not only for diagnosis but also for prognosis. While RF is a traditional marker, ACPAs are highly specific for RA and are powerful predictors of a more severe and erosive disease course [6].

The primary goal of modern RA treatment is to maximize long-term health-related quality of life by controlling symptoms, preventing structural damage, and preserving function. This is achieved through the "Treat-to-Target" (T2T) strategy, which is the central pillar of the 2022 EULAR recommendations for the management of RA [5].

Treatment should be initiated immediately upon diagnosis [5]. The first-line therapy is a conventional synthetic DMARD (csDMARD), with methotrexate serving as the undisputed anchor drug due to its robust efficacy, long-term safety data, and cost-effectiveness [5]. If the treatment target of remission or low disease activity is not achieved within 3 to 6 months despite optimizing the csDMARD regimen, therapy must be escalated.

The second phase of treatment involves the addition of a biologic DMARD (bDMARD) or a targeted synthetic DMARD (tsDMARD). bDMARDs are engineered proteins that block specific inflammatory pathways, such as TNF inhibitors, IL-6 receptor inhibitors, or agents that modulate T-cell or B-cell function [4]. tsDMARDs, most notably the Janus kinase (JAK) inhibitors, are oral small molecules that interfere with the intracellular signaling of multiple cytokines. Both drug classes have demonstrated high efficacy in controlling disease activity and halting radiographic progression [5]. The choice between these advanced therapies is guided by disease activity, patient risk factors, and shared decision-making. A crucial aspect of long-term care also involves managing comorbidities, especially the significantly increased cardiovascular risk driven by systemic inflammation, which requires proactive assessment and management as detailed in specific EULAR guidelines [1].

Bibliography

- 1. Agca R., Heslinga S.C., Rollefstad S., et al. EULAR recommendations for the management of cardiovascular risk in patients with rheumatoid arthritis and other forms of inflammatory arthritis: 2015/2016 update. *Ann Rheum Dis.* 2017;76(1):17-28.
- 2. Aletaha D., Neogi T., Silman A.J., et al. 2010 Rheumatoid arthritis classification criteria: an American College of Rheumatology/European League Against Rheumatism collaborative initiative. *Arthritis Rheum*. 2010;62(9):2569-81.

International Conference on Advance Research in Humanities, Applied Sciences and Education Hosted from New York, USA October, 28th 2025

- https://theconferencehub.com
- Kallberg H., Padyukov L., Plenge R.M., et al. Gene-gene and gene-environment interactions involving HLA-DRB1, PTPN22, and smoking in two subsets of rheumatoid arthritis. Am J Hum Genet. 2017;80(5):867-75.
- McInnes I.B., Schett G. The pathogenesis of rheumatoid arthritis. N Engl J Med. 4. 2017;365(23):2205-19.
- Smolen J.S., Landewé R.B.M., Bergstra S.A., et al. EULAR recommendations for the 5. management of rheumatoid arthritis with synthetic and biological disease-modifying antirheumatic drugs: 2022 update. Ann Rheum Dis. 2023;82(1):3-18.
- Sparks J.A. Rheumatoid Arthritis. Ann Intern Med. 2019;170(1):ITC1-ITC16. 6.