

## **ISSUES IN TEACHING MEDICAL SCIENCES USING MULTIMEDIA ELECTRONIC TOOLS**

Karimoiv Izzatulla Kamoliddin ugli

Teacher of the Department of Internal Medicine, Andijan State Medical Institute

E-mail: izzatullakarimov2944115@gmail.com

### **Abstract:**

The application of multimedia electronic devices in the teaching of medical sciences has transformed learning processes, enhancing students' learning experiences and outcomes. However, the application of these technologies has several challenges, which instructors must manage. This article discusses the most important issues related to the application of multimedia tools in medical education, such as accessibility differences, faculty training needs, information overload risks for students, and the need to preserve pedagogical quality during technology developments. We also discuss ways to address these challenges and identify best practices for maximizing multimedia application in medical curricula. By addressing these issues, schools can also prepare upcoming healthcare professionals in an increasingly digital world.

**Keywords:** Medical education, multimedia tools, electronic learning, teaching challenges, educational technology, student engagement, accessibility in education, faculty training, pedagogical strategies.

The speed with which multimedia electronic resources have been integrated into medical education has changed the way information is imparted, skills are honed, and tests are given, but with this change comes a daunting set of issues that teachers and institutions need to address mindfully. What began as captive slide shows and recorded lectures has expanded to virtual patients, simulation immersion, 3D anatomical models, augmented and virtual reality training, adaptive learning systems, and sophisticated assessment programs [1]. These technologies promise more flexible, scalable, and student-centered education but also have the potential to amplify existing inequities, create new forms of cognitive load, and shift burdens onto faculty and support systems that are not always properly prepared for long-term care and pedagogical incorporation.

Knowing history gets at why multimedia adoption at scale goes wrong. Early computer-assisted instruction was primarily concerned with knowledge acquisition through drill and practice, whereas current multimedia is concerned with experiential learning and procedural proficiency. This shift entails not only differing investments in technology but also revised curricular design, new competence models, and successful assessment schemes. Institutions that treated multimedia as an adjunct rather than an embedded part of curriculum planning

found themselves confronting fragmentation, redundancy, and incoherence between what is being learned, how students engage with content, and how performance is assessed. Moreover, the COVID-19 pandemic pushed implementation ahead of providing time for faculty development, infrastructure upgrades, or policy-making, exposing vulnerabilities that still linger in the majority of programs [2].

Pedagogical foundations are necessary but often understressed in multimedia initiatives, and the failure to ground technology in learning theory produces unwanted outcomes. Cognitive load theory, multimedia learning theory, deliberate practice, and situated cognition each offer some guidance on the way multimedia will be developed and sequenced; ignoring these principles can produce materials that distract rather than instruct. For example, high-fidelity surgical simulations that overwhelm learners with simultaneous visual, auditory, and interactive input may impede skill acquisition rather than support it if not scaffolded. Effective multimedia design requires adequate segmentation, signaling of salient information, modality alignment to task requirement, and integration of formative feedback loops promoting iterative skill mastery and knowledge consolidation [3].

Technical infrastructure and interoperability are challenges with practical impact on equity, reliability, and scalability of multimedia learning. A high-fidelity simulator, a VR headset, and cloud-based environment require stable high-bandwidth connections, current hardware, and ongoing technical support, all of which are very expensive to maintain constantly. In the vast majority of settings bandwidth constraints, device heterogeneity, and mixed platform support lead to wildly uneven learning experiences, perpetual interruptions to high-stakes testing, and a variety of locally patched processes that are difficult to normalize. Noncompliance with interoperability standards also further balkanizes resources, preventing learning objects from being shared efficiently, making them more difficult to integrate with learning management systems, and undermining long-term longevity [4].

Instructional design and content quality remain enduring problems even in the optimal performance of technology, as sleek multimedia is no guarantee of effective instruction. Poorly scripted video, untested virtual patient scenarios, or game-like modules with shallow engagement as the focus can divert learner attention and introduce extraneous cognitive load. Moreover, commercial products tend to prioritize market appeal and novelty over empirical testing and curricular applicability, leaving instructors to perform exhaustive vetting and customization. Satisfactory quality assurance procedures like peer review, correspondence with competences, proof of impact of learning, and routine updating procedures are important but in many cases not adequately funded.

Capacity building and workload issues are usually underemphasized in multimedia courses, and time and expertise to create, curate, and maintain digital learning is more than normal expectations. Instructors must acquire digital pedagogy, multimedia scripting and production,

simulation facilitation, remote evaluation techniques, and interpretation of learning analytics, along with scholarship and clinical obligations. Without career recognition, institutionally funded protected time, and digital scholarship recognition, most faculty are burned out or produce low-quality materials. Establishing interdisciplinary instructional design teams of clinicians and educational technologists can facilitate overcoming these burdens, but this would need to be accompanied by stable funding and administrative support.

Assessment validity and academic integrity are serious issues with the introduction of multimedia tools changing the modalities of assessment. Use of distant and multimedia-based assessments may be susceptible to cheating, system failures, and differences in the quality of recorded media, all of which may affect fairness and reliability. Assessment of psychomotor competence remotely or by simulation also raises questions about transfer to real clinical practice, and rubric standardization for multimedia OSCEs or video recordings necessitates careful examiner calibration. Organizations must establish robust proctoring, contingency plans, and multi-source approach strategies that triangulate competence rather than relying on a single digital artifact

Equity, access, and cultural relevance are fundamental moral and utilitarian factors that are often overlooked when multimedia is adopted hastily. Students differ in device availability, quiet spaces, stable connections, and digital literacy, which expands inequalities if institutions assume universal capacity for granted. Additionally, multimedia without captions, alternate text, flexible interfaces, or culturally positioned background information excludes disabled or diverse students. Inclusive design practices [5], co-design with a diverse set of stakeholders, device loan programs, and offline accessible copies of content are steps needed to reduce barriers and ensure technological progress does not aggravate inequity.

Legal, privacy, and ethical concerns complicate use of multimedia involving patient data, clinical encounter recording, or learner analytics. Medical images and videos at high resolution are sensitive and require rigorous de-identification, clear explicit informed consent, secure storage, and policies for open data governance transparent to local laws such as HIPAA or GDPR [6]. Third-party vendors collect usage and performance data in general, which raises issues of ownership, algorithmic opacity, and embedded biases in adaptive learning systems. Institutions must negotiate data-processing contracts, implement role-based access control, and maintain open policies regarding the ethical use of learner and patient data [7].

For the future, a set of strategic recommendations can solve these problems taking the advantages of multimedia in medical education into account. Institutions need to prioritize pedagogical alignment over technology in itself, develop centralized digital education departments that combine clinical, instructional, and technical competencies [8], and invest in faculty development and protected time to construct content. Policies must address equity via device access programs and accessibility requirements, and data governance systems must

specify allowed uses of learner and patient data and require vendor alignment with open interoperability standards. Finally, meticulous, longitudinal research has to connect multimedia interventions with clinical competence and patient outcomes so that investment and scale are determined by reliable evidence and not by fleeting fervor [9]

Overall, multimedia electronic tools provide a lavish palette of options to enhance medical education if they are applied thoughtfully in conjunction with curriculum design, backed by reliable infrastructure, and guided by broad, evidence-based pedagogy. The potential to represent complex anatomy, simulate rare clinical scenarios, and design learning paths is real and radical but one that must be realized through resolution of technical, pedagogical, ethical, and equity challenges in an organized fashion [10]. With articulation of resources, policy, and evaluation in terms of specific education goals and faculty and learner realities, medical schools are capable of using multimedia to augment competence and ultimately patient care without sacrificing equity, access, or educational integrity.

## REFERENCES

1. Arulsamy, S. (2012). Multimedia in medical education. *Journal of Medical Sciences*, 1(1), 7-11.
2. Misri, M. E. (2025, February). Enhancing Cloud Data Security Using Paillier Homographic Encryption Algorithm. In 2025 3rd International Conference on Integrated Circuits and Communication Systems (ICICACS) (pp. 1-5). IEEE.
3. Abdulrahaman, M. D., Faruk, N., Oloyede, A. A., Surajudeen-Bakinde, N. T., Olawoyin, L. A., Mejabi, O. V., ... & Azeez, A. L. (2020). Multimedia tools in the teaching and learning processes: A systematic review. *Heliyon*, 6(11).
4. Misri, M. E. (2024, December). Binary Water Wheel Plant Algorithm with Soft Gated Recurrent Unit for Software Defect Prediction. In 2024 4th International Conference on Mobile Networks and Wireless Communications (ICMNWC) (pp. 1-5). IEEE.
5. Ниёзова, Н. Ш. (2022). Сущность и значения книга Абу Райхан Беруний «Минерология»(«Китаб ал-джамахир фи ма ‘рифат алджавахир») (Doctoral dissertation, Abu Rayhon Beruniy ilmiy-madaniy merosining ahamiyati va uning fan taraqqiyotidagi o ‘rni).
6. Агабабян, И. Р., Тошназарова, Н. Ш., Тошназаров, Ш. М., & Журакулов, Ф. Н. (2020). Рациональная гипотензивная терапия в профилактике хронической сердечной недостаточности у больных гипертонической болезнью. *Вестник науки и образования*, (24-3 (102)), 63-67.
7. Ниёзова, Н. (2022). Teletibbiyotni rivojlantirish–inson salomatligini saqlashda yangi bosqich. Materials of International student's conference: Digitalization is the future of medicine.

8. Ниёзова, Н. И. (2014). Здоровый образ жизни и гигиеническая культура. *The Way of Science*, 50.
9. Misri, M. E. The Impact Of Devops Practices On Software Development Lifecycle.
10. Misri, M. E. (2025, April). Stock Market Price Prediction using Ebola Optimization Search Algorithm with Bi-Directional Gated Recurrent Unit. In 2025 4th International Conference on Distributed Computing and Electrical Circuits and Electronics (ICDCECE) (pp. 1-6). IEEE.