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Abstract 

Lightweight Cryptography (LWC) algorithms are critical for securing resource-constrained 

devices in the Internet of Things (IoT), embedded systems, and cyber-physical applications. 

This paper provides a comprehensive analysis of hardware and software implementations of 

LWC algorithms, focusing on the sequence of implementation, target platforms, programming 

languages, tools, and environments. We present key performance metrics, including area, 

power, throughput, and memory usage, and conduct comparative analyses of tools and 

performance data for NIST LWC ciphers, such as Ascon, GIFT-COFB, and TinyJAMBU. 

Insights from the NIST LWC standardization process highlight the trade-offs between security 

and efficiency. Our findings offer guidance for practitioners and researchers deploying LWC 

in constrained environments. 

 

Keywords: Lightweight Cryptography, Hardware Implementation, Software Implementation, 

NIST LWC, IoT Security, Performance Metrics. 

 

1. Introduction 

The rapid growth of the Internet of Things (IoT) and embedded systems has driven demand 

for cryptographic solutions that operate efficiently on resource-constrained devices, such as 

RFID tags, sensors, and microcontrollers. Lightweight Cryptography (LWC) algorithms 

address these needs by providing security with minimal computational, memory, and power 

requirements, unlike traditional algorithms like AES, which are resource-intensive. The 

National Institute of Standards and Technology (NIST) LWC standardization process (2018–

2023) evaluated 57 candidates, selecting Ascon as the standard for its balance of security, 

performance, and versatility. 

LWC implementations are realized in hardware (e.g., FPGAs, ASICs) for high efficiency and 

in software (e.g., microcontrollers) for flexibility. Hardware implementations prioritize small 

chip area and low power, while software implementations focus on low memory usage and 

portability. Key performance metrics guide the evaluation of these implementations, ensuring 

suitability for constrained environments. 
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1.1 Hardware and Software Implementations for LWC Algorithms 

Hardware implementations leverage dedicated circuits to achieve high throughput and low 

power, critical for battery-powered IoT devices. Software implementations, executed on 

general-purpose processors or microcontrollers, offer ease of deployment but face challenges 

in meeting real-time constraints. Both approaches require careful optimization to meet LWC’s 

stringent resource constraints. 

 

1.2 Key Performance Metrics for Hardware and Software Implementation 

Hardware Metrics: 

- Area: Measured in gate equivalents (GE) for ASICs or Look-Up Tables (LUTs) for 

FPGAs, targeting <2000 GE for ultra-lightweight applications. 

- Power Consumption: Measured in microwatts, critical for energy harvesting devices. 

- Throughput: Measured in bits per second (bps), reflecting encryption speed. 

- Latency: Time to process one block, crucial for real-time applications. 

Software Metrics: 

- Memory Usage: RAM and ROM requirements, often <512 bytes for constrained 

devices. 

- Throughput: Measured in bytes per second (Bps), dependent on processor architecture. 

- Execution Time: Clock cycles per operation, affecting responsiveness. 

- Code Size: Flash memory footprint, critical for microcontrollers. 

This paper explores the implementation sequences, platforms, tools, and performance of NIST 

LWC ciphers, providing comparative analyses to guide practitioners. 

 

2. Hardware Implementation 

2.1 Hardware Implementation Sequence 

The hardware implementation of LWC algorithms follows a structured sequence [4]: 

- Algorithm Specification: Define the algorithm’s structure (e.g., block cipher, sponge 

construction) and parameters (key size, nonce, tag). 

- RTL Design: Develop Register-Transfer Level (RTL) code in VHDL or Verilog, 

specifying data paths and control logic. 

- Simulation: Use tools like ModelSim to verify functional correctness against test 

vectors. 

- Synthesis: Map the design to target hardware (FPGA or ASIC) using synthesis tools 

like Xilinx Vivado or Synopsys Design Compiler. 

- Place-and-Route: Optimize physical layout for area, power, and timing. 

- Verification: Perform post-synthesis simulation and timing analysis. 
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- Implementation: Deploy the design on the target platform, testing for performance and 

power. 

2.2 Target Platforms [5] 

- FPGAs: Xilinx Artix-7 and Spartan-7 are widely used for prototyping due to their 

reconfigurability and low cost. 

- ASICs: Custom chips for mass production, offering minimal area and power (e.g., 

180nm or 65nm CMOS processes). 

- Microcontrollers: Low-power MCUs like MSP430 for hybrid hardware-software 

designs. 

2.3 Programming Languages [5] 

- VHDL/Verilog: Standard hardware description languages for RTL design, offering 

precise control over logic. 

- SystemVerilog: Used for advanced verification and constrained-random testing. 

- High-Level Synthesis (HLS): C/C++-based HLS (e.g., Vivado HLS) accelerates design 

by abstracting low-level details. 

2.4 Tools and Environments 

- Xilinx Vivado: Supports FPGA synthesis, place-and-route, and power analysis. Used 

in NIST LWC for Artix-7 benchmarking. 

- Synopsys Design Compiler: Optimizes ASIC designs for area and power, used for 

candidates like GIFT-COFB. 

- Cadence Genus: Alternative ASIC synthesis tool, focusing on low-power designs. 

- ModelSim: Simulates VHDL/Verilog designs, ensuring correctness. 

- GMU Hardware API: Standardizes LWC hardware evaluation, providing AEAD 

interfaces. 

2.5 Comparative Analysis Data of Performance of NIST LWC Ciphers 

Table 1 and 2 summarizes the hardware performance of NIST LWC finalists on Xilinx Artix-

7 FPGA and 22nm ASIC (and TSMC 65nm for one case) [3]. 

The ASIC implementations, fabricated using GF 22nm technology except for Romulus (TSMC 

65nm), showcase diverse performance characteristics across the algorithms Ascon, GIFT-

COFB, Grain-128AEAD, Elephant, ISAP, and Romulus. Throughput varies significantly, with 

Ascon achieving the highest at 531.9 Mbps, followed by ISAP at 195.03 Mbps and Elephant 

at 70.92 Mbps, while Grain-128AEAD offers the lowest at 0.01773 Mbps, indicating its 

suitability for ultra-low-bandwidth applications. Area efficiency, measured in kGE (kilo-gate 

equivalents), ranges from 4.3 kGE (Grain-128AEAD) to 17.3 kGE (Elephant), with Romulus 

standing out at 10,008 kGE due to its older 65nm technology, suggesting a less optimized 

design. Power consumption data is unavailable for most algorithms except Romulus (13.86 

mWatt), which operates at 1 GHz, reflecting a moderate power profile for its throughput of 
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9.35 Mbps. Frequency data is absent for all but Romulus, highlighting a gap in performance 

optimization details. Ascon and ISAP demonstrate a balance of high throughput and low area, 

making them ideal for resource-constrained, high-speed environments, while Grain-128AEAD 

excels in minimal area usage, suited for IoT devices. The lack of frequency and power data for 

most algorithms limits a comprehensive power-efficiency analysis, but the trend suggests a 

trade-off between throughput and area, with Romulus’s larger area reflecting its older 

technology. 

Table 1 

ASIC Implementation of NIST LWC finalist’s ciphers 

Algorithm 

ASIC Implementation 

Technology 
Frequency 

(GHz) 

Throughput 

(Mbps) 

Area 

(kGE) 

Power 

(mWatt) 

Ascon GF 22nm N/A 531.9 11 - 

GIFT-COFB GF 22nm N/A 159.57 8.1 - 

Grain-

128AEAD 

GF 22nm N/A 0.01773 4.3 - 

Elephant GF 22nm N/A 70.92 17.3 - 

ISAP GF 22nm N/A 195.03 15.4 - 

Romulus 
TSMC 

65nm 

1 9.35 10008 13.86 

 

The FPGA implementations, primarily on Xilinx Artix 7 except for SPARKLE (Virtex 7), 

reveal a rich performance landscape across Ascon, GIFT-COFB, TinyJAMBU, Grain-

128AEAD, Elephant, ISAP, Photon-Beetle, Romulus, and Xoodyak. GIFT-COFB leads in 

throughput at 2897.5 Mbps (249 MHz), followed by Xoodyak at 2960.4 Mbps (234 MHz) and 

ISAP at 2560 Mbps (280 MHz), showcasing their suitability for high-speed applications, while 

Grain-128AEAD offers the lowest at 3.96 Mbps (247.5 MHz), ideal for low-bandwidth 

scenarios. Area, measured in LUTs (look-up tables), ranges from 576 (TinyJAMBU) to 2065 

(Photon-Beetle), with Romulus at 953 LUTs indicating efficient resource use. Power 

consumption, normalized at 75 MHz where available, varies from 76 mWatt (Elephant) to 242 

mWatt (Photon-Beetle), with GIFT-COFB at 208 mWatt reflecting higher energy demands for 

its throughput. Frequency ranges from 178 MHz (Photon-Beetle) to 280 MHz (ISAP), with 

SPARKLE at 186.70 MHz on Virtex 7. GIFT-COFB and Xoodyak excel in throughput-per-

area ratios, making them suitable for performance-critical systems, while TinyJAMBU and 

Elephant offer low area and power, ideal for resource-constrained environments. The 

variability in power data (e.g., missing for Grain-128AEAD) suggests further optimization 
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potential, with a clear trade-off between throughput and power/area efficiency across the 

algorithms. 

Table 2 

FPGA Implementation of NIST LWC finalist’s ciphers 

Algorithm 

FPGA Implementation 

Technology 
Frequency 

(MHz) 

Throughput 

(Mbps) 

Area 

(LUTs) 

Power 

(mWatt) 

Ascon Artix 7 233 1491.2 1913 100 (75 MHz) 

GIFT-COFB Artix 7 249 2897.5 1641 208 (75 MHz) 

TinyJAMBU Artix 7 240 1396.4 576 106 (75 MHz) 

Grain-

128AEAD 
Artix 7 247.5 3.96 1730 - 

SPARKLE Virtex 7 186.70 232.09 1530 - 

Elephant Artix 7 229 282.9 1291 76 (75 MHz) 

ISAP Artix 7 280 2560 1674 94 

Photon-Beetle Artix 7 178 747 2065 242 (75 MHz) 

Romulus Artix 7 229 637.2 953 99 (75 MHz) 

Xoodyak Artix 7 234 2960.4 1355 130 (75 MHz) 

 

3. Software Implementation 

3.1 Software Implementation Sequence 

The software implementation sequence includes: 

- Algorithm Specification: Analyze the algorithm’s operations (e.g., permutations, 

bitwise operations). 

- Code Development: Write optimized code in C or assembly, targeting specific 

platforms. 

- Simulation: Test code against NIST test vectors using IDEs or simulators. 

- Optimization: Apply techniques like loop unrolling or table lookups to reduce cycles. 

- Profiling: Measure memory usage, throughput, and execution time. 

- Deployment: Integrate into the target application, ensuring compatibility. 

- Verification: Validate functionality and performance in real-world conditions. 

3.2 Target Platforms 

- Microcontrollers: ARM Cortex-M0/M3 (32-bit, low-power), Renesas RL78 (16-bit), 

MSP430 (16-bit). 

- Embedded Processors: RISC-V for open-source designs, used in IoT nodes. 

- General-Purpose CPUs: For benchmarking, though less relevant for constrained 

devices. 
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3.3 Programming Languages 

- C: Primary language for portability and optimization, used in NIST reference 

implementations. 

- Assembly: For cycle-accurate optimizations on specific MCUs (e.g., Cortex-M0). 

- Python: For prototyping and test vector generation, not deployment. 

3.4 Tools and Environments 

- GCC/Clang: Compilers for generating optimized code for ARM and RISC-V. 

- Keil uVision: IDE for embedded development, supporting debugging and profiling. 

- PlatformIO: Cross-platform IDE for IoT, used in NIST submissions. 

- IAR Embedded Workbench: Optimizes code size and performance for RL78 and 

MSP430. 

- Crypto++: Reference library for validation, though too heavy for deployment. 

3.5 Comparative Analysis Data of Performance of NIST LWC Ciphers 

Renner et al. [2] proposed a benchmarking framework to evaluate AEAD algorithm 

performance on microcontrollers, using execution time (average microseconds per test vector), 

compiled binary size, and RAM usage as key metrics. The study encompasses 295 

implementations across five microcontroller platforms. 

Selected results are summarized in Table 3. On the Arduino Uno, SPARKLE, GIFT-COFB, 

and Xoodyak demonstrated the fastest execution times, with ASCON, Tiny-JAMBU, and 

Romulus also showing competitive performance. On the ESP32, ASCON, Xoodyak, and Tiny-

JAMBU ranked highest in speed. Regarding code size, ASCON and PHOTON-Beetle had the 

smallest binaries on the Arduino Uno, while ASCON, ISAP, Tiny-JAMBU, SPARKLE, and 

Xoodyak achieved the lowest code sizes on the Maixduino [1]. 

Table 3 

Speed and code size measurements 

Algorithm 

Speed, microseconds ROM size, b  

Arduino Uno ESP32 
Arduino  

Uno 
Maixduino 

Ascon 2472.06 22.86 5388 1.24×105 

GIFT-COFB 2250.02 55.61 5814 1.31×105 

TinyJAMBU 2386.1 43.59 9956 1.24×105 

Grain-128AEAD 5113.35 119.72 9394 1.29×105 

SPARKLE 1999.74 62.2 6664 1.25×105 

Elephant 12730.3 3986.3 7930 1.32×105 

ISAP 22486 608.46 5486 1.25×105 

Photon-Beetle 4821.26 185.76 4442 1.3×105 

Romulus 2870.17 114.16 15166 1.29×105 

Xoodyak 2371 39.18 5598 1.25×105 
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4. Summary 

This paper provided a detailed examination of hardware and software implementations of 

LWC algorithms, focusing on the NIST LWC ciphers. Hardware implementations, leveraging 

FPGAs and ASICs, achieve small area (<2000 GE) and low power (<30 μW), with tools like 

Vivado and Design Compiler enabling optimization. Software implementations, targeting 

microcontrollers, prioritize low memory (60–120 bytes RAM) and portability, using GCC and 

Keil uVision. Comparative analyses reveal Ascon-128’s balanced performance, 

TinyJAMBU’s minimal footprint, and GIFT-COFB’s efficiency. The NIST LWC process 

underscores the importance of standardized APIs and community benchmarking. 
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