
 ICARHSE

International Conference on Advance Research in Humanities, Applied Sciences and Education
Hosted from Berlin, Germany

https://theconferencehub.com 27th May -2025

 37

HARDWARE AND SOFTWARE IMPLEMENTATION OF LIGHTWEIGHT

CRYPTOGRAPHY ALGORITHMS

Zarif Khudoykulov

PhD, Tashkent University of Information

Technologies named after Muhammad al-Khwarizmi,

zarif.khudoykulov@tuit.uz

Abstract

Lightweight Cryptography (LWC) algorithms are critical for securing resource-constrained

devices in the Internet of Things (IoT), embedded systems, and cyber-physical applications.

This paper provides a comprehensive analysis of hardware and software implementations of

LWC algorithms, focusing on the sequence of implementation, target platforms, programming

languages, tools, and environments. We present key performance metrics, including area,

power, throughput, and memory usage, and conduct comparative analyses of tools and

performance data for NIST LWC ciphers, such as Ascon, GIFT-COFB, and TinyJAMBU.

Insights from the NIST LWC standardization process highlight the trade-offs between security

and efficiency. Our findings offer guidance for practitioners and researchers deploying LWC

in constrained environments.

Keywords: Lightweight Cryptography, Hardware Implementation, Software Implementation,

NIST LWC, IoT Security, Performance Metrics.

1. Introduction

The rapid growth of the Internet of Things (IoT) and embedded systems has driven demand

for cryptographic solutions that operate efficiently on resource-constrained devices, such as

RFID tags, sensors, and microcontrollers. Lightweight Cryptography (LWC) algorithms

address these needs by providing security with minimal computational, memory, and power

requirements, unlike traditional algorithms like AES, which are resource-intensive. The

National Institute of Standards and Technology (NIST) LWC standardization process (2018–

2023) evaluated 57 candidates, selecting Ascon as the standard for its balance of security,

performance, and versatility.

LWC implementations are realized in hardware (e.g., FPGAs, ASICs) for high efficiency and

in software (e.g., microcontrollers) for flexibility. Hardware implementations prioritize small

chip area and low power, while software implementations focus on low memory usage and

portability. Key performance metrics guide the evaluation of these implementations, ensuring

suitability for constrained environments.

mailto:zarif.khudoykulov@tuit.uz

 ICARHSE

International Conference on Advance Research in Humanities, Applied Sciences and Education
Hosted from Berlin, Germany

https://theconferencehub.com 27th May -2025

 38

1.1 Hardware and Software Implementations for LWC Algorithms

Hardware implementations leverage dedicated circuits to achieve high throughput and low

power, critical for battery-powered IoT devices. Software implementations, executed on

general-purpose processors or microcontrollers, offer ease of deployment but face challenges

in meeting real-time constraints. Both approaches require careful optimization to meet LWC’s

stringent resource constraints.

1.2 Key Performance Metrics for Hardware and Software Implementation

Hardware Metrics:

- Area: Measured in gate equivalents (GE) for ASICs or Look-Up Tables (LUTs) for

FPGAs, targeting <2000 GE for ultra-lightweight applications.

- Power Consumption: Measured in microwatts, critical for energy harvesting devices.

- Throughput: Measured in bits per second (bps), reflecting encryption speed.

- Latency: Time to process one block, crucial for real-time applications.

Software Metrics:

- Memory Usage: RAM and ROM requirements, often <512 bytes for constrained

devices.

- Throughput: Measured in bytes per second (Bps), dependent on processor architecture.

- Execution Time: Clock cycles per operation, affecting responsiveness.

- Code Size: Flash memory footprint, critical for microcontrollers.

This paper explores the implementation sequences, platforms, tools, and performance of NIST

LWC ciphers, providing comparative analyses to guide practitioners.

2. Hardware Implementation

2.1 Hardware Implementation Sequence

The hardware implementation of LWC algorithms follows a structured sequence [4]:

- Algorithm Specification: Define the algorithm’s structure (e.g., block cipher, sponge

construction) and parameters (key size, nonce, tag).

- RTL Design: Develop Register-Transfer Level (RTL) code in VHDL or Verilog,

specifying data paths and control logic.

- Simulation: Use tools like ModelSim to verify functional correctness against test

vectors.

- Synthesis: Map the design to target hardware (FPGA or ASIC) using synthesis tools

like Xilinx Vivado or Synopsys Design Compiler.

- Place-and-Route: Optimize physical layout for area, power, and timing.

- Verification: Perform post-synthesis simulation and timing analysis.

 ICARHSE

International Conference on Advance Research in Humanities, Applied Sciences and Education
Hosted from Berlin, Germany

https://theconferencehub.com 27th May -2025

 39

- Implementation: Deploy the design on the target platform, testing for performance and

power.

2.2 Target Platforms [5]

- FPGAs: Xilinx Artix-7 and Spartan-7 are widely used for prototyping due to their

reconfigurability and low cost.

- ASICs: Custom chips for mass production, offering minimal area and power (e.g.,

180nm or 65nm CMOS processes).

- Microcontrollers: Low-power MCUs like MSP430 for hybrid hardware-software

designs.

2.3 Programming Languages [5]

- VHDL/Verilog: Standard hardware description languages for RTL design, offering

precise control over logic.

- SystemVerilog: Used for advanced verification and constrained-random testing.

- High-Level Synthesis (HLS): C/C++-based HLS (e.g., Vivado HLS) accelerates design

by abstracting low-level details.

2.4 Tools and Environments

- Xilinx Vivado: Supports FPGA synthesis, place-and-route, and power analysis. Used

in NIST LWC for Artix-7 benchmarking.

- Synopsys Design Compiler: Optimizes ASIC designs for area and power, used for

candidates like GIFT-COFB.

- Cadence Genus: Alternative ASIC synthesis tool, focusing on low-power designs.

- ModelSim: Simulates VHDL/Verilog designs, ensuring correctness.

- GMU Hardware API: Standardizes LWC hardware evaluation, providing AEAD

interfaces.

2.5 Comparative Analysis Data of Performance of NIST LWC Ciphers

Table 1 and 2 summarizes the hardware performance of NIST LWC finalists on Xilinx Artix-

7 FPGA and 22nm ASIC (and TSMC 65nm for one case) [3].

The ASIC implementations, fabricated using GF 22nm technology except for Romulus (TSMC

65nm), showcase diverse performance characteristics across the algorithms Ascon, GIFT-

COFB, Grain-128AEAD, Elephant, ISAP, and Romulus. Throughput varies significantly, with

Ascon achieving the highest at 531.9 Mbps, followed by ISAP at 195.03 Mbps and Elephant

at 70.92 Mbps, while Grain-128AEAD offers the lowest at 0.01773 Mbps, indicating its

suitability for ultra-low-bandwidth applications. Area efficiency, measured in kGE (kilo-gate

equivalents), ranges from 4.3 kGE (Grain-128AEAD) to 17.3 kGE (Elephant), with Romulus

standing out at 10,008 kGE due to its older 65nm technology, suggesting a less optimized

design. Power consumption data is unavailable for most algorithms except Romulus (13.86

mWatt), which operates at 1 GHz, reflecting a moderate power profile for its throughput of

 ICARHSE

International Conference on Advance Research in Humanities, Applied Sciences and Education
Hosted from Berlin, Germany

https://theconferencehub.com 27th May -2025

 40

9.35 Mbps. Frequency data is absent for all but Romulus, highlighting a gap in performance

optimization details. Ascon and ISAP demonstrate a balance of high throughput and low area,

making them ideal for resource-constrained, high-speed environments, while Grain-128AEAD

excels in minimal area usage, suited for IoT devices. The lack of frequency and power data for

most algorithms limits a comprehensive power-efficiency analysis, but the trend suggests a

trade-off between throughput and area, with Romulus’s larger area reflecting its older

technology.

Table 1

ASIC Implementation of NIST LWC finalist’s ciphers

Algorithm

ASIC Implementation

Technology
Frequency

(GHz)

Throughput

(Mbps)

Area

(kGE)

Power

(mWatt)

Ascon GF 22nm N/A 531.9 11 -

GIFT-COFB GF 22nm N/A 159.57 8.1 -

Grain-

128AEAD

GF 22nm N/A 0.01773 4.3 -

Elephant GF 22nm N/A 70.92 17.3 -

ISAP GF 22nm N/A 195.03 15.4 -

Romulus
TSMC

65nm

1 9.35 10008 13.86

The FPGA implementations, primarily on Xilinx Artix 7 except for SPARKLE (Virtex 7),

reveal a rich performance landscape across Ascon, GIFT-COFB, TinyJAMBU, Grain-

128AEAD, Elephant, ISAP, Photon-Beetle, Romulus, and Xoodyak. GIFT-COFB leads in

throughput at 2897.5 Mbps (249 MHz), followed by Xoodyak at 2960.4 Mbps (234 MHz) and

ISAP at 2560 Mbps (280 MHz), showcasing their suitability for high-speed applications, while

Grain-128AEAD offers the lowest at 3.96 Mbps (247.5 MHz), ideal for low-bandwidth

scenarios. Area, measured in LUTs (look-up tables), ranges from 576 (TinyJAMBU) to 2065

(Photon-Beetle), with Romulus at 953 LUTs indicating efficient resource use. Power

consumption, normalized at 75 MHz where available, varies from 76 mWatt (Elephant) to 242

mWatt (Photon-Beetle), with GIFT-COFB at 208 mWatt reflecting higher energy demands for

its throughput. Frequency ranges from 178 MHz (Photon-Beetle) to 280 MHz (ISAP), with

SPARKLE at 186.70 MHz on Virtex 7. GIFT-COFB and Xoodyak excel in throughput-per-

area ratios, making them suitable for performance-critical systems, while TinyJAMBU and

Elephant offer low area and power, ideal for resource-constrained environments. The

variability in power data (e.g., missing for Grain-128AEAD) suggests further optimization

 ICARHSE

International Conference on Advance Research in Humanities, Applied Sciences and Education
Hosted from Berlin, Germany

https://theconferencehub.com 27th May -2025

 41

potential, with a clear trade-off between throughput and power/area efficiency across the

algorithms.

Table 2

FPGA Implementation of NIST LWC finalist’s ciphers

Algorithm

FPGA Implementation

Technology
Frequency

(MHz)

Throughput

(Mbps)

Area

(LUTs)

Power

(mWatt)

Ascon Artix 7 233 1491.2 1913 100 (75 MHz)

GIFT-COFB Artix 7 249 2897.5 1641 208 (75 MHz)

TinyJAMBU Artix 7 240 1396.4 576 106 (75 MHz)

Grain-

128AEAD
Artix 7 247.5 3.96 1730 -

SPARKLE Virtex 7 186.70 232.09 1530 -

Elephant Artix 7 229 282.9 1291 76 (75 MHz)

ISAP Artix 7 280 2560 1674 94

Photon-Beetle Artix 7 178 747 2065 242 (75 MHz)

Romulus Artix 7 229 637.2 953 99 (75 MHz)

Xoodyak Artix 7 234 2960.4 1355 130 (75 MHz)

3. Software Implementation

3.1 Software Implementation Sequence

The software implementation sequence includes:

- Algorithm Specification: Analyze the algorithm’s operations (e.g., permutations,

bitwise operations).

- Code Development: Write optimized code in C or assembly, targeting specific

platforms.

- Simulation: Test code against NIST test vectors using IDEs or simulators.

- Optimization: Apply techniques like loop unrolling or table lookups to reduce cycles.

- Profiling: Measure memory usage, throughput, and execution time.

- Deployment: Integrate into the target application, ensuring compatibility.

- Verification: Validate functionality and performance in real-world conditions.

3.2 Target Platforms

- Microcontrollers: ARM Cortex-M0/M3 (32-bit, low-power), Renesas RL78 (16-bit),

MSP430 (16-bit).

- Embedded Processors: RISC-V for open-source designs, used in IoT nodes.

- General-Purpose CPUs: For benchmarking, though less relevant for constrained

devices.

 ICARHSE

International Conference on Advance Research in Humanities, Applied Sciences and Education
Hosted from Berlin, Germany

https://theconferencehub.com 27th May -2025

 42

3.3 Programming Languages

- C: Primary language for portability and optimization, used in NIST reference

implementations.

- Assembly: For cycle-accurate optimizations on specific MCUs (e.g., Cortex-M0).

- Python: For prototyping and test vector generation, not deployment.

3.4 Tools and Environments

- GCC/Clang: Compilers for generating optimized code for ARM and RISC-V.

- Keil uVision: IDE for embedded development, supporting debugging and profiling.

- PlatformIO: Cross-platform IDE for IoT, used in NIST submissions.

- IAR Embedded Workbench: Optimizes code size and performance for RL78 and

MSP430.

- Crypto++: Reference library for validation, though too heavy for deployment.

3.5 Comparative Analysis Data of Performance of NIST LWC Ciphers

Renner et al. [2] proposed a benchmarking framework to evaluate AEAD algorithm

performance on microcontrollers, using execution time (average microseconds per test vector),

compiled binary size, and RAM usage as key metrics. The study encompasses 295

implementations across five microcontroller platforms.

Selected results are summarized in Table 3. On the Arduino Uno, SPARKLE, GIFT-COFB,

and Xoodyak demonstrated the fastest execution times, with ASCON, Tiny-JAMBU, and

Romulus also showing competitive performance. On the ESP32, ASCON, Xoodyak, and Tiny-

JAMBU ranked highest in speed. Regarding code size, ASCON and PHOTON-Beetle had the

smallest binaries on the Arduino Uno, while ASCON, ISAP, Tiny-JAMBU, SPARKLE, and

Xoodyak achieved the lowest code sizes on the Maixduino [1].

Table 3

Speed and code size measurements

Algorithm

Speed, microseconds ROM size, b

Arduino Uno ESP32
Arduino

Uno
Maixduino

Ascon 2472.06 22.86 5388 1.24×105

GIFT-COFB 2250.02 55.61 5814 1.31×105

TinyJAMBU 2386.1 43.59 9956 1.24×105

Grain-128AEAD 5113.35 119.72 9394 1.29×105

SPARKLE 1999.74 62.2 6664 1.25×105

Elephant 12730.3 3986.3 7930 1.32×105

ISAP 22486 608.46 5486 1.25×105

Photon-Beetle 4821.26 185.76 4442 1.3×105

Romulus 2870.17 114.16 15166 1.29×105

Xoodyak 2371 39.18 5598 1.25×105

 ICARHSE

International Conference on Advance Research in Humanities, Applied Sciences and Education
Hosted from Berlin, Germany

https://theconferencehub.com 27th May -2025

 43

4. Summary

This paper provided a detailed examination of hardware and software implementations of

LWC algorithms, focusing on the NIST LWC ciphers. Hardware implementations, leveraging

FPGAs and ASICs, achieve small area (<2000 GE) and low power (<30 μW), with tools like

Vivado and Design Compiler enabling optimization. Software implementations, targeting

microcontrollers, prioritize low memory (60–120 bytes RAM) and portability, using GCC and

Keil uVision. Comparative analyses reveal Ascon-128’s balanced performance,

TinyJAMBU’s minimal footprint, and GIFT-COFB’s efficiency. The NIST LWC process

underscores the importance of standardized APIs and community benchmarking.

5. References

1. Turan M. S. et al. Status report on the final round of the NIST lightweight cryptography

standardization process. – US Department of Commerce, National Institute of Standards and

Technology, 2023.

2. Renner S, Pozzobon E, Mottok J LWC Benchmark, GitHub repository. Available at

https://lab.las3.de/gitlab/lwc/compare.

3. Konstantopoulou E., Athanasiou G., Sklavos N. Review and Analysis of FPGA and ASIC

Implementations of NIST Lightweight Cryptography Finalists //ACM Computing Surveys. –

2025.

4. Ovilla-Martínez B. et al. FPGA implementation of some second round NIST lightweight

cryptography candidates //Electronics. – 2020. – Т. 9. – №. 11. – С. 1940.

5. Rezvani B. et al. Hardware implementations of NIST lightweight cryptographic candidates:

A first look //Cryptology ePrint Archive. – 2019.

https://lab.las3.de/gitlab/lwc/compare

